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J. Phys. A: Math. Gen. 20 (1987) 1695-1712. Printed in the U K  

Classical statistical mechanics of kink-bearing systems with 
parametrised double-well and asymmetric non-linear on-site 
potentials 

M Croitoru 
Department of Fundamental Physics, Institute for Physics and Nuclear Engineering, 
Bucharest, PO Box MG-6, Romania 

Received 17 June 1986, in final form 27 August 1986 

Abstract. The thermodynamical properties of non-linear systems capable of supporting 
more than one kink excitation and more than one kind of extended mode are studied in 
the displacive limit and at very low temperatures. Our attention is concentrated on a class 
of parametrised non-linear potentials V(@, r )  whose shapes can be varied continuously as 
a function of a parameter r and which are doubly periodic, such as the double-well doubly 
periodic (DWDP) and the asymmetric doubly periodic (ASDP) cases proposed by 
Remoissenet and Peyrard. In the chosen limits, the Fredholm integral equation of the 
transfer integral operator can be converted into an ‘effective’ Schrodinger equation depend- 
ing on a large parameter. An asymptotic method recently developed by Croitoru et a! for 
the evaluation-to leading order in the large parameter-of the eigenspectrum of the 
Schrodinger-like equation corresponding to systems that admit a single kink solution, as 
well as a single type of extended mode, is extended to treat systems supporting polykink 
solutions and two types of extended modes. 

1. Introduction 

In the low-temperature regime the classical thermodynamics of kink-bearing systems 
has been of considerable recent interest, the important role which the kinks (solitons) 
play being very well established. Though the results concerning the sine-Gordon (SG) 
model as well as the Q4 and double quadratic (DQ) chain (Currie er a1 1980) are very 
encouraging, they remain nevertheless limited in their applicability to real physical 
systems because of an important fact: in real physical systems the shape of the non-linear 
on-site potential may deviate considerably from that attributed to the local potentials 
involved in the above-mentioned models. Therefore the study of the ‘elementary 
excitations’ (phonons and kinks) of one-dimensional systems with a new periodic 
parametrised potential was pursued, the shape of which could be varied continuously 
as a function of a parameter (Remoissenet and Peyrard 198 1, Peyrard and Remoissenet 
1982). The main feature of this potential consists in the fact that, depending on the 
value of the parameter, there can exist either sharp wells separated by flat tops or flat 
bottoms flanked by sharp tops. However, this new system supports a single kink 
solution. It seemed far more interesting to investigate systems in which the non-linear 
periodic potential possesses either barriers of different heights or bottoms of different 
curvatures. An obvious consequence of such local potentials will be the appearance 
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of more than one kink solution, and more than one phonon dispersion relation, this 
latter feature being related to the existence of potential wells of different shapes. 

A prototype of a ‘polykink-bearing’ system is the double sine-Gordon ( DSG) model, 
which possesses two qualitatively different potential barriers, and consequently two 
different kink solutions (Condat er a1 1983, DeLeonardis and Trullinger 1983, Leung 
1982, 1983, Pandit et a1 1983a, b, Giachetti et al 1984). Another model responsible 
for disolitonic behaviour is the doubly periodic quadratic ( DPQ) chain, whose properties 
have been investigated by DeLeonardis and Trullinger (1983). Some common features 
with the DSG system represent the double-well doubly periodic system ( DWDP), whose 
dynamical properties have been analysed by Peyrard and co-workers (Remoissenet 
and Peyrard 1984, Peyrard and Campbell 1986). The latter authors also studied the 
kink-small oscillation and kink-kink scattering for an asymmetric doubly periodic 
(ASDP) potential. A very interesting property of the ASDP system consists in the fact 
that it supports not only two asymmetric ‘kink solutions’ but also two different extended 
modes (different ‘media’), characterised by two different dispersion relations. With 
respect to this property we remark that the asymmetric kinks evolve the system from 
one ‘medium’ to the other. The main characteristic of all the above-mentioned ‘poly- 
kink’-bearing systems, although they are not completely integrable, is that kink proper- 
ties are very close to those of completely integrable ones (Remoissenet and Peyrard 
1984, Peyrard and Campbell 1986, Bullough and Caudrey 1978, Schiefman and Kumar 
1979, Maki and Kumar 1976). Thus the ‘kinks’ of these systems can be assimilated 
with quasiparticles, and it is an interesting task to study the role they play in the 
thermodynamics of these systems. 

One of the methods which allows us to exactly determine the partition function of 
a kink-bearing system is the transfer integral method (TIM)  (Scalapino et a1 1972). 
This approach, developed for one-dimensional systems with a singly periodic on-site 
potential, has been extended by Condat er a1 (1983) and DeLeonardis and Trullinger 
(1983) to models with potentials with double periodicity (DSG, DPQ). 

The purpose of this paper-in order to determine the free energy per unit length-is 
to extend the TIM (as well as the generalised Langer transformation (Croitoru et a1 
1984, Nayfeh-Hasan 1973)) to the DWDP and ASDP models introduced by Remoissenet 
and Peyrard (1984). In 0 2 we present the description of the models under study and 
also define the associated quantities of interest. For both models, in 0 3 we calculate 
the temperature dependence of the free energy in the low-temperature regime and in 
the displacive limit. Section 4 summarises the main results. 

2. Model description 

Let us consider a one-dimensional chain of N harmonically coupled oscillators 
governed by the Hamiltonian 

Here is the dimensionless field variable of the ith oscillator, I the lattice constant, 
A a constant which sets the energy scale, and c, and wo are a characteristic velocity 
and frequency, respectively. The non-linear on-site potential V ( @ )  to which the 



Classical statistical mechanisms of kink-bearing systems 1697 

harmonic oscillators are submitted will be considered to be of two parametrised forms, 
namely (Remoissenet and Peyrard 1984) 

l + c o s @  
( 1 + r Z + 2 r  cos(#)* 

DWDP potential: V(Q) = ( I  - r )4  

( 2 6 )  
1 -cos @ 

ASDP potential: v(@)  = ( 1  - r2)2  
( 1 + r 2 + 2 r  

where the parameter r is supposed to be confined to the interval 0 s  r < 1 .  
The potentials (2a, b )  possess the following symmetry and periodicity properties: 

V ( @ )  = V ( - @ )  

V ( @ )  = V ( @ + p )  with p = 47r. 
(3) 

For r = 0, both potentials recover the well known sine-Gordon potential. While the 
DWDP potential ( 2 a )  is characterised by potential barriers of different heights and 
potential wells of the same shape (see figure l(a)) ,  the ASDP potential ( 2 b )  possesses 
potential barriers of the same height, but two adjacent minima have different curvatures 
(figure l ( b ) ) .  

For the DWDP potential the local minima are found at 

= (2n + l ) ~  n =0, *l, * 2 , .  . . ( 4 a )  

while the local maxima are found at 

@ = 4nn @ = 2n + 4 7 n  n = O , * l ,  1 2 , .  . . . ( 4 6 )  

We note that for = 47rn the potential ( 2 a )  takes the value 

and for @ = 27r + 47rn we have 

V ( 2 r  + 47rn) = 2. 

I b l  

- 
-3n -2n -7I-p, 0 p,-x p2 2n 3n Q 

Figure 1. Representation o f the  potentials V ( @ ,  r )  ( a )  for the DWDP and ( b )  for the ASDP 

model. The different barriers, as well as the different wells, are specified by the notations 
I and 11. In case (a )  h,, is the lowest isolated-well eigenvalue, and in case ( b )  and 

are the two different isolated-well eigenvalues. 
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While the higher barrier (56) is of constant value, the smaller one ( 5 a )  depends on 
the parameter r, and for r + 1 it becomes very small. At the local minima the second 
derivative V”(Q,) is also a function of r, namely 

(1 - r)4 
V[(2n + l ) ~ ]  =- 

(1+r2 )”  

For increasing values of r the potential wells become flatter and flatter. 
In the case of the ASDP potential (2b) the local minima are situated at 

Q, = 2 ~ n  n = o ,  *l, 1 2 , .  , , ( 7 a )  

and the local maxima are found at 

(7b) 

At the points (7b), the potential barrier has the constant value 

V(@) = 2. (8) 

The second derivative V ( @ )  corresponding to adjacent minima takes different values, 
namely 

V”(@ = 2 ~ + 4 ~ n )  = - ( 
If the parameter r approaches unity ( r  + 1) (9a)  becomes very small (flat bottom) and 
(9b) becomes very large (sharp bottom). 

In the following we restrict the parameters in (1) to the displacive limit ( d  3 co/wo>> 
I )  in which the non-linear kinks become well defined ‘elementary excitations’ with 
long lifetimes. In this regime the Hamiltonian (1) becomes 

H = A dx(;[Q,((x, f ) ] ’ + f c i [ @ , . ( x ,  t ) ] ’ + w i V ( @ ) }  (10) 

@ (( - c;Q, XX + fJJi V( Q,) = 0. 

V’ = d V/d@ = a2@/at2 oXx = a2@’/ax2. 

i 
and the associated equation of motion is 

(11) 

Here 

For the two non-linear on-site potentials ( 2 4  b) equation (11) supports soliton-like 
solutions as well as small amplitude oscillations. Their analytical expressions, together 
with the kink rest masses, have been derived by Remoissenet and Peyrard (1984), and 
are listed in table 1. From there we recognise the essential particulars of the two 
models under study, as follows. 

( a )  In the case of the DWDP potential ( 2 a )  the system supports a single type of 
extended mode, but two kinds of kink solutions with different rest masses. The type-I 
kink evolves the system from one well to the adjacent one over the type-I barrier (small 
barrier) while the type-I1 solution describes the evolution of the system over the type-I1 
barrier (high barrier). 
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Table 1. Various quantities of the DWDP and ASDP systems associated with the kink (+) 
and antikink (-) solutions of equation ( I l ) ,  as well as of its small amplitude solutions. 
Mk" are the rest masses and (w: ) ' . "  the phonon dispersion relations, y = ( 1  - u ~ / c ; ) - " ~ ,  
s = x - uf, U being the velocity of the moving kink. 

1 + r 2  r@ 
In[tan($D +an)] +- 

( I - r ) 2  ( I - r ) *  
1 + r2 2 r  
- ~n[tan(+@)] +- In[sin(j@)] 
I - r2 I - r 2  

I + r2 1 + r2 
( I - r ) '  1 - r2 

In[-cotan(+@ +an)] - h[-cotan(+@)] 

2 r  
1 - r2 

-- In[ -sin(;@)] 

1 - r  

w ( - )  l + r  + c ; k 2  
1 - r  

(b)  In the case of the ASDP potential (26) there exist two different kinds of extended 
modes, each confined to one of the two different wells. The kinks are asymmetric 
possessing the same rest mass, and the type-I kink evolves the system from well I to 
well I1 while the type-I1 kink evolves the system from well I1 to well I. 

Now let us proceed to a short sketch of the essential relations concerning the 
statistical mechanics of the systems under study. The classical partition function Z 
for systems governed by the Hamiltonian (1) factors into kinetic and configurational 
parts (Currie et a1 1980, Condat er a1 1983, DeLeonardis and Trullinger 1983), namely 

z = Z&Z, (12) 

where 

and 

Z, = exp( -pLAu&,,). 
n 

Here p = ( k B T ) - '  ( k ,  being Boltzmann's constant), h is Planck's constant, N the 
number of atoms contained in the chain and E, is the nth eigenvalue of the transfer 
integral operator. In the thermodynamic limit ( L +  CO, N + CO, L/ N = constant) 2, is 
dominated by the lowest eigenvalue E ~ ,  and the free energy per unit length (F= 
-( l /pL) In 2 )  becomes 
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It is this quantity we shall calculate in the next section by determining the lowest 
eigenvalue of the transfer integral operator. 

3. Asymptotic evaluation of the eigenspectrum 

In the displacive limit the determination of the lowest eigenvalues of the transfer 
integral operator can be achieved by solving the eigenvalue problem represented by 
an ‘effective’ Schrodinger equation into which the Fredholm integral equation of the 
T I M  can be converted (Currie er a1 1980, Condat et a1 1983, DeLeonardis and  Trullinger 
1983, Scalapino et a1 1972), and which can be written 

d 2 ~ , / d @ * + A 2 q ( @ ) ~ , ( @ )  = 0 (15) 

where 

q ( @ )  = E, - V ( @ )  (16) 

and  {V,,(@)} represent the right-hand eigenfunctions of the transfer integral operator 
(Croitoru et a1 1984). The parameter A and the eigenvalue F, are defined by 

Here E , ,  the nth eigenvalue of the transfer integral operator, has been introduced in 
(13b). In the following, for the sake of simplicity, the subscript n will be omitted. 

With respect to equation ( 1 9 ,  we have to make some remarks about the reasoning 
which determined the asymptotic method we used to solve the eigenvalue problem. 

In the low temperature limit, the effective mass m* becomes very large, thus (15) 
belongs to the class of second-order differential equations depending on a large 
parameter. This fact suggests determining its solutions in the form of an asymptotic 
expansion in a power series of A. In doing so, the turning points for which q ( @ )  = O  
will play a special role. In the case of periodical potentials to which the parametrised 
potentials ( 2 a ,  b )  belong, the turning points appear in sequences of pairs (Croitoru el 
a1 1984), each pair corresponding to a single potential well. Being faced with a problem 
with two turning points very close to each other, it seemed suitable to use an asymptotic 
method developed especially for such problems (Nayfeh-Hasan 1973). In a recent 
paper (Croitoru er a1 1984) such an  asymptotic procedure has been employed to obtain 
solutions of an  equation which has the same characteristics as equation (15) but 
corresponds to systems which support a single kink solution, as well as a single kind 
of extended mode. Here this method will be extended to polykink and poly-extended 
mode bearing systems. Following the approach used by Croitoru er a1 (1984), equation 
(15) will be solved in two steps. 

(1) Firstly, we look for a uniformly valid asymptotic expansion of the solution in 
the region between two turning points of an  isolated well. The evaluation of this 
solution will be performed using the Langer transformation (Croitoru et a1 1984, 
Nayfeh-Hasan 1973), according to which (15) will be replaced by an equivalent equation 
whose solutions are asymptotically equivalent to those of (15). 

( 2 )  In  the second step we take into account the presence of the adjacent potential 
wells. As is known from previous studies (Currie et a1 1980, Croitoru et a1 1984), 
in the case of singly periodic potentials the existence of neighbouring wells leads to 
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the tunnel splitting of the degenerated isolated well eigenvalues into allowed narrow 
bands. In Croitoru er a1 (1984) this tunnelling term has been obtained by imposing 
on the isolated well solutions symmetry requirements which these solutions have to 
satisfy. In order to extend the procedure developed in Croitoru et a1 (1984) to the 
models under study, we have to take into account the characteristics of the potentials 
(2a, b )  pointed out in § 2 and which can be summarised as follows. 

( a )  In the case of DWDP systems the potential ( 2 a )  can be imagined as a periodic 
repetition of a symmetric double well (see figure 2 ( a ) ) .  I t  is known (Currie et a1 1980, 
DeLeonardis and Trullinger 1983) that the presence of two wells (see for instance the 
Q4 model) will give rise to the tunnel splitting of the degenerated isolated well 
eigenvalue. Afterwards, accounting also for the periodical repetition of the double 
well, the two double-well eigenvalues will further tunnel-split into allowed narrow 
bands (figure 3 ( a ) ) .  Thus the tunnelling through the type-I1 barrier will be responsible 
for the band structure, while that through the type-I barrier will be responsible for the 
band gap. 

( b )  A similar picture can be imagined for the ASDP case, the basic quantity, whose 
periodical repetition generates the potential ( 2 b ) ,  being an asymmetric double well 
(figure 2 ( b ) ) .  Again, due to the presence of two wells, the two different degenerate 

Figure 2. Schematic plot of a symmetric ( a )  and an asymmetric ( b )  ‘Gouble-well’ on-site 
potential. The full curves represent the tunnel-split eigenvalues g;, ;;. E,, ( b )  is the middle 
value of .‘Lo and ;A’,. 

l b l  

- 1 0 )  
E t  

- ( D l  
E b  

Figure 3. A schematic plot of the two lowest bands generated by the tunnel splitting of 
the degenerate lowest isolated-well eigenvalue. 
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isolated well eigenvalues will tunnel-split into two new eigenvalues corresponding to 
the asymmetric double well. As can be expected, the periodical repetition of the double 
well will lead to a further tunnel splitting into two allowed bands. We guess that the 
band and gap formation will not 

Our second remark concerns 
equation (15 ) .  According to (3), 
and periodicity properties: 

q ( @ )  = d-@) 
d@) = d@ + P )  

be quite so simple as in the DWDP case. 
the symmetry properties of the solutions 9(@) of 
the function q ( 0 )  displays the following symmetry 

(18) 
p = 4T. 

Thus equation (15)  belongs to the class of Hill equations and its eigenfunctions are 
the Bloch functions: 

Here n represents the band index and k the wavevector whose allowed values are 
contained in the first Brillouin zone (-a, a). In accordance with (19), the solutions 
9(@) can be even or odd, depending on the value of the wavevector. 

In order to proceed to the asymptotic evaluation of the eigenspectrum of ( 1 9 ,  we 
have to define the Langer transformation on which, according to the introductory 
remarks made above, the forthcoming determinations will be based. Thus, following 
Langer’s approach (Nayfeh-Hasan 1973) one introduces a transformation of the depen- 
dent and independent variables defined by 

9(@) = x-’ /4v 

Q 

P = P ( z ) = j - & , d T m  (20) 

x = q(@)/(p’)’ p’ = dp/dz x - i / 4  = (dz/d@)-’/’ 

where the new independent variable z is still any undefined function of @. In (20) p I  
represents one of the turning points of an isolated well (figure l ( a ) ) .  With (20), 
equation ( 1 5 )  transforms into 

du/dz’+A2(p’)Zu = Su (21) 
where 

(22) 8 = -~ -~ /~d’ (x - ’ /~ ) /d@’ .  

If one can choose p(z) such that S = O( l ) ,  then the related equation 

d2u/dz2+A2(p’)2u = O  (23) 
has solutions which are asymptotically equivalent to the solutions of ( 1 5 )  for large A. 
This condition is fulfilled provided that x is a regular function in the interval of 
interest?. A convenient choice for (p’)2-adequate only for potentials which can be 
approximated with that of a harmonic oscillator-is the following (Croitoru et a1 1984, 
Nayfeh-Hasan 1973): 

(24) (p’ ) ’  = 4a2( 1 - z’). 

t For more details the reader is referred to Nayfeh-Hasan (1973) and Croitoru er a /  (1984). 
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According to (24), (p ’ ) ’  has two simple zeros, and we take z = - 1  to correspond to 
@ = p i ,  and choose a so that z = 1 corresponds to @ = p2 ,  p2 being the second turning 
point of the isolated well. Then in accordance with (20 )  we have 

@ 

p (  Z )  = 2a { d7( 1 - 72) I / ’  = lp, d t ( 2 5 )  
-1  

and consequently 

With (24) the related equation (23 )  becomes 

d’~ , /d~~+4a’A’( l  - z ~ ) u = O  

and its solutions are the parabolic cylinder functions uI and u2 (Abramowitz and Stegun 
1965, Whittaker and Watson 1950) or any linear combination of them. For the systems 
under study, it seemed convenient to choose the following linear combination: 

u ( x )  = u1(x) + C U ’ ( X )  

x = 2 m z  

(28 )  
where 

and u1 and u2 are defined as follows: 

u l ( x )  = exp( -!x’)M( - v ;  f; ix‘) 

u d x )  = x exp( - i x 2 ) ~ (  - v + f; i; f x ’ ) .  

Here M (  b ;  c ;  6 )  represents the Kummer function and v is related to a by 

aA = f + 2 v .  (30 )  
With the comments and relations given up to now we are in a position to calculate 

the eigenspectrum of (15). 
Firstly, we concentrate our attention on an isolated well. Then the solution of (27 )  

has to be an even one, i.e. u ( x )  = U ( - x ) .  Consequently, C = 0 and the isolated well 
solution will be given by u i ( x ) .  Moreover, the requirement that ( 2 9 a )  decays exponen- 
tially for I x I + CO will be satisfied if and only if v is an integer. Hence (30)  becomes 

a h  = f + 2 n  n = 0 ,  1 , 2 , .  . , ( 3 1 )  
and represents the relation which determines to leading order in A the eigenvalues of 
the isolated well. By using (31 )  together with (26)  we obtain 

DWDP potential: 

1 ( 1 - r ) ’  
g,, -- (f + 2 n )  - - &P 1 + r 2  

ASDP potential: 

well I 

well I1 
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where 

m 1  = ( 1  - r ) / ( l +  r)  m2 = ( 1  + r ) / (  1 - r) .  (33)  

Because mz> m, we also have E:> E!, .  
In the low temperature limit we are interested only in the lowest eigenvalue ( n  = 0) 

of the isolated well. Knowing its expression (32) we can proceed to the determination 
of its tunnel splitting into continuous bands due  to the presence of the periodic sequence 
of the other potential wells. Then the lower and  upper extremities of the two lowest 
allowed bands will result from (30), where v now represents a very small quantity 
related to the small shifts from the isolated well eigenvalue. Following Croitoru et a1 
(1984), it will be determined from the boundary conditions (DWDP system) or from 
matching requirements (ASDP system) satisfied by the isolated well eigenfunction 

* (a )  = x-”4( U1 + CV*) (34) 

and its first derivative. The form (34) assumed for the eigenfunction *(@) reflects the 
fact that in the DWDP case (if we take into account the neighbouring wells) the isolated 
well solution no longer has the same behaviour (as in the SG case (Croitoru er a1 1984)) 
at the right and  left boundaries (high and  small barrier) of the well (see figure l (a ) ) .  
Moreover, in the ASDP case, to each ‘medium’ there corresponds a different isolated 
well solution of the form (34), and each type of well has as an  adjacent well (on its 
right as well as on its left side) the other type of well (see figure l (b) ) .  Due to some 
basic differences the two models under consideration will be treated separately. 

3.1. DWDP system 

In the case of a symmetric double well (or a singly periodic potential such as the 
sine-Gordon one) the lower and upper tunnel-split eigenvalues (the bottom and top  
of the lowest band) result from the simple requirement that at the midpoint between 
two adjacent wells the eigenfunction has to be an even function of Q, if it corresponds 
to the fundamental level (to the bottom of the lowest band), and  an  odd one if it 
corresponds to the first excited state (or the top  of the lowest band). Now, for the 
model under consideration we are faced up  with two different barriers. Consequently 
the isolated well eigenfunction *(@) (34) has to satisfy, at  the midpoint between a 
well and its neighbouring ones, on the left ( top of type-I barrier) as well as on the 
right side (top of type-I1 barrier), the following requirements: 

bottom of the first band 
d@ 

*(@ = 27r) = 0 top of the first band 

*(@ = 0 )  = 0 bottom of the second band ( 3 6 ~ )  

*( @ = 0) = 0 *(@ = 27r) = 0 top of the second band ( 3 6 ~ )  
which reflect the fact that four possibilities exist: the eigenfunction *(a) is an even 
o r  odd function of @ ((35a), (366)) with respect to both barriers, o r  it is an  even 
function of Q, with respect to one barrier and an odd function with respect to the other 
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barrier ( (35b) ,  (360)). Obviously, in writing the conditions (35)  and (36) we have 
accounted for (19). While the variable @ takes finite values at the boundary points, 
the variable x (or z )  becomes very large, namely for @ - 0, x + -CO and for 0 - 27, 
x += CO. Therefore in these regions, the asymptotic expansions of the Kummer functions 
will be involved in (34) (Abramowitz and  Stegun 1965). For / X / + C O  they may be 
approximated by 

(37a) ~ ( - 2 ) ;  t ;  fx') - i - 2  J;; v( l / l x  1 )  exp(fx') 

Furthermore, in order to evaulate relations (35) and (36) explicitly we need a knowledge 
of the relation which exists between x (or I) and 0 in the asymptotic regions. According 
to the definition relations (20) and (24) we have (Croitoru et a1 1984) 

( 3 8 ~ )  

In order to reveal the even and odd character of the eigenfunctions involved in (35)  
and (36), respectively, we introduce the following notations for the small quantity Y :  
v,, (in 35a)),  v,, (in ( 3 5 b ) ) ,  vo, (in (36a)) and v,, (in (36b)). Then, by using (35)  
and (36) together with (37 )  and (38) we obtain 

v e e  = - voo veo = - voe (39) 

where 

1 
v,, = -- Jrre [9'" - P"] 

with 

and  
27r 

4"" = exp( - 2 A  d@ y) 
where 

By using (30) we are now in a position to deduce compact expressions for the 
eigenvalues corresponding to the bottom (b) and  the top (t)  of the two lowest bands 
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( n  =0 ,1)  (see figure 3(a ) ) :  

Here goo is given by (32a) (with n = 0) and represents the harmonic oscillator contribu- 
tion, while the second term of each of the four expressions (42) is related to the 
tunnelling terms. In the low temperature limit the only contribution to the partition 
function stems from (42a), and by comparison with the singly periodic systems we 
may write 

where 

represents the tunnelling rate through the type-I and type-I1 barriers, respectively. 
Then the free energy per unit length is 

F = - l n ( T )  1 Phdwo +AwiEoo-Awito. 
PI  

(45) 

The integrals involved in 9(*s'1) can easily be evaluated by means of a procedure 
(Whittaker and Watson 1950) employed in Croitoru et al. Evaluating them, we get 
the following approximate expressions for the quantities 9"."': 

Here E(1.11) = c,M(l.ll) 
K represents the rest energy of the two different kink solutions. 

Recalling the expression (44) we see that the tunnelling through the two barriers is 
strictly related to the two types of kink solutions. 

Each bandwidth L b  follows immediately from (42) and is given by 

while the bandgap L, ,  evaluated between the centres of the two bands, is given by 
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As expected (recall the picture we imagined for the band formation), the bandwidth 
is the same for both bands and  is proportional to the tunnelling through the type-I1 
barrier, while the bandgap (representing the splitting of the isolated well eigenvalue 
into two eigenvalues due  to the second well of the symmetric double well) is propor- 
tional to the tunnelling through the type-I barrier. These results are in complete 
agreement with those obtained by DeLeonardis and Trullinger (1983). 

If we evaluate the gap  between the top  of the first band and  the bottom of the 
second one, its width is 

and for r = 0 it vanishes; we recover the single lowest band of the sine-Gordon system. 

3.2. ASDP system 

Now let us consider a unit cell (0,477). According to figure 1( b) around @ = 0 and 
@ = 477 we have a type-I well, while the well around @ = 277 is type 11. In the following 
we shall denote the eigenfunctions corresponding to the two different wells by *(')(@) 
and 'P(")(@), respectively. They will be assumed to be of the form (34). The choice 
of this unit cell is in accordance with the evolution of the system from well-I over the 
first barrier to well-I1 (first kink solution) and  from well-I1 over the second barrier to 
well-I (second kink solution). For values of @ which lie outside the region between 
the two turning points of an  isolated well the variable x (or z )  becomes very large. In 
these asymptotic regions the explicit relation between @ and z is 

well-I (0 - 0): 

1 @  - 
z ' - p { w l  d ~ J I q ( ~ ) ( + f + l n ( 2 2 ) +  . . .  z > o  ( 5 0 ~ )  

well-I1 (@ - 277): 

well-I (@ - 477): 

Here pl , p2 and G I ,  F , ,  respectively, are the turning points corresponding to the wells 
involved (see figure l ( b ) )  and  their expressions in terms of E' are 

- 
p ,  = 2 sin-l(m, J$$ p2 = 277 - 2 sin-'(m, 44;) (51a) - 
gl  = 477 -2  sin-'(m2 4%) b2 = 277 + 2 sin-'(m, Jf t ) .  ( 5 1 ~  

With respect to the two barriers, the eigenfunctions *( I ) (@) and * ( ' I ) ( @ )  can be even 
or odd functions of @. The matching relations which express the continuity of the 
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even and odd eigenfunctions and their first derivatives are 

V'(@) = *wy@) I L ,<@<P*  

wy@) = *W"(@) ;,<@<A 
dVi l ) /d@ = *dVil"/d@ 

dq(" ' /d@ = *dq'"/d@ 

where (+) corresponds to even functions ( k  = 0) and (-) to odd ones ( k  = $). The 
constant C involved in the expression of the eigenfunction V(@) (see (34)), as well 
as the small quantity v contained in the asymptotic expansion of the Kummer functions 
(37), will be also specified by the superscript n = I,  I1 in accordance with the type of 
well to which the eigenfunction belongs. Moreover, in order to reveal the even and 
odd character of the eigenfunctions we introduce the notations v:"") and vi'."'. With 
these specifications, the explicit evaluation of the matching relations (52~1, b) leads to 

V O  v?'= -v, ' I 1 '  (53) v ; l '  = - ' 1 )  

where 

with 

Here 

4'" = exp( -A J P 2  d@ i) 
PI  

4("'= exp( -A 1'' d o  m) 
'I 

and, as expected, 4"' = 4"". Finally, by using (30) together with (53)-(55) we obtain 
compact expressions for the extremities of the first two allowed bands into which the 
two isolated-well eigenvalues will tunnel-split. They are 

and 

where 
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and represents a middle value of the two isolated-well eigenvalues ( 3 2 b )  and ( 3 2 c ) ,  
with respect to which the two tunnel-split lowest bands are symmetrically situated. 
For r = 0, m ,  = m2 = 1, and  we recover the lowest eigenvalue of the harmonic oscillator 
of an  isolated well of the sine-Gordon system. 

In the low temperature regime the only contribution to the partition function will 
be given by the bottom of the lowest band (57a) and thus the free energy per unit 
length can be approximated by 

The sum of the first two terms on the right-hand side of (59) is precisely equal to the 
free-energy density of a set of one-dimensional classical harmonic oscillators when 
calculated to leading order O ( I / d )  of the displacive limit. The presence of the two 
‘media’ appears in this limit as a new ‘medium’ (a weighted combination of the two 
‘media’), to which corresponds a harmonic oscillator whose lowest eigenvalue is given 
by (58). The last term -Awi to  can be clearly associated with the kinks, as can easily 
be shown. 

Now we may write 

to = t i l ) +  tb“’ (60) 
where 

Here the superscript n = I ,  I1 specifies the type of well from which the tunnelling 
process through the adjacent barrier starts. Recalling the definition relations (33) of 
m ,  and m 2 ,  we observe that t ; ) <  tb”’. This inequality can be explained by the fact 
that the height of a barrier ‘measured’ from the lowest isolated eigenvalue E!: of the 
type-I well is larger than that ‘measured’ from the isolated well eigenvalue E::) 
corresponding to the type-I1 well. Taking this into account, by analogy with the DWDP 

results, we may expect that the bandwidth will be proportional to t;’ and the bandgap 
will be proportional to t r ” .  Indeed, from (57) we obtain 

1 1  L 
- J7Te m m 3  

and 

1 1  
L,=- J.rre m m3 

when evaluated from the centres of the two bands. If the gap is evaluated between 
the top of the lowest band and the bottom of the second one its width is given by 

1 1  
(64) 1, = - ( m :  - 419 

and vanishes for r = 0; again we recover the sine-Gordon case. 
The integrals involved in (55) and defined by (56a, b )  can be easily calculated by 

using the procedure employed by Croitoru er al. By performing these calculations we 
obtain the following final (appoximate) expression for the tunnelling term to: 

(65) t o=  ( 2 / 7 T ) 1 / 2 2 2 2 ( m , + m , ) / 4 1  2 ( m : +  m : ) ( m * ) ” 4  exp(-pE,) 
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where EK = c;MK represents the rest energy of the two kinks. The special form (65) 
again shows that the tunnelling is clearly associated with the kinks. Though the 
tunnelling rates ti” and t i ” )  are weighted by the parameters m: and m:, respectively, 
which characterise the well from which the tunnelling process starts, they also depend 
weakly (note the factor 2(”’1+”’2)’~) on the well to which this process proceeds. We 
recall that all calculations have been based on the assumption that the potential wells 
can be approximated by a harmonic oscillator, i.e. we have limited our investigations 
to such values of the shape parameter r for which this hypothesis is fine. For very 
small values of r this assumption is clearly fulfilled and then 2(ml+”’2)’4 is slightly 
different from a. 

4. Conclusions 

In the preceeding sections we have presented the main features of two polykink-bearing 
systems, such as the DWDP and ASDP chain. As an interesting property of the latter 
system, we have pointed out the presence of two types of extended modes, each 
confined to one of the two different potential wells. 

Extending an asymptotic procedure employed in a recent paper (Croitoru er a1 
1984) for the study of singly periodic systems such as the O4 and SG chain to the 
investigation of the low temperature thermodynamics of polykink as well as of poly- 
extended mode-bearing systems, we have succeeded in calculating the temperature 
dependence of the free-energy density in the displacive limit. In the DWDP case the 
free-energy density contains two parts: a term which can be precisely attributed to the 
free-energy density of a set of harmonic phonons when calculated to order O(Z/d) of 
the displacive limit, and a term which can be clearly associated with the two types 
of kinks ((44), (46)), thus representing the free-energy density of a dilute ideal gas of 
two types of kinks. In the ASDP case our results again show that the free-energy density 
contains a part which represents the contribution of a set of harmonic oscillators and 
a second one strongly related to the two asymmetric kinks with the same rest energy 
((61), (65 ) ) .  ‘i’his latter portion can be considered as the free-energy density of a dilute 
gas of two types of kinks: the type-I kink describes the evolution of the system from 
‘medium I’ to ‘medium 11’, while the type-I1 kink describes the system’s evolution 
from ‘medium 11’ to ‘medium 1’. We remark that, on the one hand, the phonon 
contribution to the free-energy density stems from a ‘medium’ which represents a 
weighted combination of the two different ‘media’, and on the other hand the contribu- 
tion to the free-energy density of both types of kinks depends on both wells, even if 
the main dependence is determined by the well from which the tunnelling starts. 
Furthermore, the asymptotic method employed in our studies enabled us to evaluate, 
for the two models investigated here, the tunnel splitting of the lowest isolated-well 
eigenvalue (DWDP case) as well as of the two different isolated-well eigenvalues (ASDP 
case) into two allowed narrow bands, for whose lower and upper extremities we 
obtained compact expressions dependent on the shape parameter r. For r = O  we 
recovered in both cases the known sine-Gordon results. Taking in the ASDP case as 
reference levels for the barrier’s height the two different lowest isolated-well eigen- 
values, it resulted for both models that the bandwidth is due to the tunnelling through 
the high barrier, while the tunnelling through the small barrier determines the gap 
between the two bands. These latter conclusions are in complete agreement with the 
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picture which can be imagined to generate the two potentials ( 2 a ,  b ) ,  namely the 
periodic repetition of a symmetric and an  asymmetric double well, respectively. Indeed, 
by starting for instance in the DWDP case, from the double well (see figure 2 ( a ) ) ,  the 
degenerated lowest isolated-well eigenvalue tunnel splits into 

the splitting being given by 

By comparing ( 6 7 )  with ( 4 8 ) ,  we see that 2t' is identical to the width of the gap between 
the two bands. Taking into account the periodic repetition of the double well, each 
eigenvalue Zh and ti, respectively, will tunnel-split into a narrow band. The lower 
and  upper extremities of these bands are 

and  

the width of both bands being given by 

thus completely recovering the results ( 4 2 ) ,  ( 4 7 )  and (48) and so the picture we have 
imagined seems completely adequate. 

Much remains to be done, however, to extend the above analysis still further. For 
example, there may exist physical situations for which it is not always possible to 
assume small values for the shape parameter r for which the potential wells can be 
approximated by a harmonic oscillator. Thus for such situations one has to imagine 
a suitable change of the Langer transformation. Another challenging problem rep- 
resents the extension of the phenomenological ideal-gas theory to treat the ASDP system 
as well, and not only polykink-bearing systems like those studied by DeLeonardis and 
Trullinger (1983) .  
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